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ABSTRACT

The identification of ambiguities in Arabic requirement documents plays a crucial role in requirements 
engineering. This is because the quality of requirements directly impacts the overall success of software 
development projects. Traditionally, engineers have used manual methods to evaluate requirement 
quality, leading to a time-consuming and subjective process that is prone to errors. This study explores 
the use of machine learning algorithms to automate the assessment of requirements expressed in natural 
language. The study aims to compare various machine learning algorithms according to their abilities 
in classifying requirements written in Arabic as decision tree. The findings reveal that random forest 
outperformed all stemmers, achieving an accuracy of 0.95 without employing a stemmer, 0.99 with 
the ISRI stemmer, and 0.97 with the Arabic light stemmer. These results highlight the robustness 
and practicality of the random forest algorithm.

Keywords
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Software engineering is the application of engineering principles to ensure the quality, reliability, 
and efficiency of software systems. The Institute of Electrical and Electronics Engineers (IEEE) 
defines software engineering as “the application of a systematic, disciplined, quantifiable approach 
to the development, operation, and maintenance of software” (IEEE, 1990). As technology advances, 
software engineering faces challenges such as the classification and ambiguity of software system 
requirements. Requirements are fundamental to software development, and their ambiguity can lead 
to misunderstandings, miscommunications, and project failure. Understanding and addressing these 
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challenges is crucial, and model-driven engineering approaches can enhance requirement clarity 
and consistency.

A significant obstacle for academics and developers working on Arabic natural language 
processing (NLP) applications is the scarcity of Arabic datasets, particularly in recognizing ambiguous 
requirements. Failure to detect and resolve ambiguity early in the software requirements specification 
(SRS) can result in various defects with serious consequences for the software development process. 
Ambiguities in software requirements, defined as sentences with multiple meanings, can lead to faults 
and compromise software reliability, especially in safety-critical systems.

This research addresses the challenge of detecting ambiguous requirements in Arabic language 
software development by proposing a novel approach that employs supervised learning algorithms for 
automated classification. This approach contributes significantly to Arabic NLP, offering a potential 
solution to improve software development accuracy in Arabic-speaking regions. By providing a robust 
means of detecting ambiguous requirements, the proposed method has the potential to reduce risks 
associated with Arabic software development, ultimately leading to higher-quality software products.

The importance of an efficient method for classifying Arabic requirements as ambiguous or non-
ambiguous is twofold. First, in the research domain, as there are limited prior studies in this area, this 
method serves as a pioneering effort that could stimulate further research. Second, from a practical 
standpoint, various stakeholders stand to benefit from improved requirements engineering processes.

The key contributions of this work include proposing the use of machine learning (ML) to 
classify ambiguous requirements in Arabic, comparing several classifiers to identify the most effective 
method for this task, and creating a dataset of Arabic requirements for future research. The subsequent 
sections encompass a literature review, methodology, experimental work, and conclusions, providing 
a comprehensive exploration of the proposed approach.

RELATED WORK

In the realm of software development, understanding stakeholder needs is crucial for designing 
complex software systems (Althunibat et al., 2022). Stakeholders, often users, contribute NLP-written 
requirements for large-scale projects. Ko et al. (2007) proposed an approach wherein initial data 
needs are automatically categorized into topics, reflecting political analyst perspectives. Experiments, 
utilizing datasets in both Korean and English, validate the efficacy of this strategy. This highlights 
the potential for an internet-based requirements analysis-supporting system to efficiently gather and 
evaluate dispersed end-user requirements via the network.

Moving forward, support vector machine (SVM) algorithms have garnered attention for their ideal 
academic characteristics and high performance (Al Qaisi et al., 2021). Yang et al. (2010) delved into 
the analysis of support vector characteristics, presenting a novel learning process that incorporates 
SVM classification algorithms. The algorithm, rooted in the equivalence of classification between 
support vector sets, employs incremental learning to accumulate data. Experimental results indicate 
its potential to expedite training processes, reduce storage costs, and maintain organizational accuracy 
(Quba et al., 2021).

Artificial intelligence (AI) and deep learning (DL) come to the forefront in the work of Navarro-
Almanza et al. (2017). They recommend using a convolutional neural network (CNN) model to 
categorize software requirements, showcasing promising results on the PROMISE corpus dataset. 
This dataset, with pre-grouped and labeled criteria for both functional requirements (FR) and non-
functional requirements (NFR), serves as a valuable resource for evaluating the suggested model. 
(Gill et al., 2014)

Lu and Liang (2017) further contributed to understanding user requirements by breaking them 
down into FRs and NFRs, including usability, portability, performance, and reliability. Their research 
involved diverse methods such as bag of words (BoW), CHI2, TF-IDF, and AUR-BoW, as well as 
ML algorithms like J48, naive Bayes, and bagging. Comparative analysis reveals that the bagging 
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ML algorithm provides the best categorization outcome for NFRs, as validated by feedback from 
actual customers.

In the domain of ML techniques for classifying FR phrases, AlZu’bi and Jararweh (2020) 
introduced a novel approach that integrates information from various ML models. This method, 
implemented and trained using a single dataset, aims to enhance the accuracy and quality of FR 
classification.

To address imbalanced classes and improve classifier performance, Kurtanović and Maalej 
(2017) propose a strategy applying cross-validation to classifiers. Their focus is on the automatic 
identification of NFRs, particularly in the categories of security, usability, operations, and performance. 
This involves preprocessing steps such as stopword and punctuation removal, coupled with feature 
selection using BoW, bigrams, and trigrams. Notably, the inclusion of part-of-speech tags emerges 
as a highly informative feature in their experiments using the SVM classifier algorithm.

The landscape of software requirement classification is further enriched by exploring various 
methodologies (Alsawareah et al., 2023; Al-Kasabera et al., 2020). These studies aimed to establish 
correlations between software architecture and NFRs, emphasizing the significance of considering 
software architecture in addressing NFRs within the software development life cycle.

In order to identify uncertainties in Arabic requirement documents through the utilization of ML 
algorithms, it is crucial to comprehend the distinct obstacles associated with the Arabic language 
and the implementation of ML in the field of NLP. Elazhary (2016) emphasized the origins of 
uncertainties in the Arabic language and effective strategies for composing Arabic user requirements 
to prevent the introduction of uncertainties. This offers valuable insights into the distinctive linguistic 
attributes of Arabic that must be taken into account when designing ML algorithms for detecting 
ambiguity. In addition, Ezzini et al. (2021) examined the management of ambiguity in requirements 
engineering and the creation of automated systems to detect ambiguity. These sources serve as a 
basis for comprehending the current research on the topic and the possibility of creating ML-driven 
solutions for identifying uncertainties in Arabic requirement papers. Furthermore, they provide 
an extensive examination of Arabic morphological analysis methodologies, which is essential for 
comprehending the linguistic characteristics of Arabic that may give rise to misunderstandings in 
requirement papers. Acquiring this comprehension is crucial for constructing efficient ML algorithms 
customized to the distinctive linguistic attributes of Arabic. Additionally, Das et al. (2020) and 
Yang et al. (2010) examined the use of ML algorithms in many fields, showcasing the capacity to 
utilize ML for identifying ambiguity in natural language needs. When these sources are combined, it 
becomes clear that the literature offers useful knowledge on the difficulties of identifying ambiguity 
in Arabic requirement papers and the possibility of using ML methods to tackle these difficulties. 
Comprehending the linguistic subtleties of Arabic, current methodologies for detecting ambiguity, 
and the use of ML in related fields is essential for the development of efficient ML algorithms to 
detect ambiguities in Arabic requirement documents. (Nigam et al., 2012).

This synthesis of recent literature demonstrates the evolving landscape of software requirements 
analysis, encompassing diverse techniques and methodologies that contribute to the enhancement of 
software development processes.

METHODOLOGY

This section introduces a novel methodology that leverages ML for the identification and resolution 
of ambiguity in Arabic software requirements. Illustrated in Figure 1, a multistep approach was 
employed to attain the outlined objective. The following overview summarized the methodology, 
encompassing the application of decision trees, logistic regression, K-nearest neighbors (KNN), SVMs, 
random forest, XGBoost, and DL models, particularly the AraBERT model. Additionally, it outlines 
the experimental design, data preprocessing, model optimization, feature selection, and evaluation 
methodologies implemented to ensure the robustness and efficacy of the proposed approach.
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Research Design
The research design in this section unfolds through a series of sequential steps, as depicted in the 
diagram below, aimed at the development and evaluation of a model. The initial step involved the 
collection of data from various sources to compile a dataset of Arabic data. Subsequently, the collected 
data underwent preprocessing, including activities such as cleaning and transformation to ensure 
their quality. Following the preprocessing phase, features were extracted from the dataset to pinpoint 
the most informative attributes. Further refinement of these properties was achieved through feature 
selection. Once the feature selection process was completed, a suitable ML method was selected, and 
the model was trained using the preprocessed and feature-selected dataset. Finally, the performance 
of the model was rigorously evaluated using metrics such as accuracy, precision, recall, or F1 score. 
This comprehensive research strategy is designed to ensure the construction of an effective and 
reliable model, yielding accurate and valuable insights for the research study.

Figure 2 displays the aredication for arabic software requirements, as shown in the following.

Data Collection
Using various resources such as Google and other search engines, comprehensive data were collected 
to obtain a reliable dataset. A number of experts were consulted to validate the relevance and quality 
of the collected requirements.

Data Preprocessing
The second phase in our methodology was to preprocess the raw data so that it could be analyzed 
further. For data preprocessing, we used the following steps:

Upload File: The software requirements data file was in Txt format.
Text Preprocessing: The extracted requirements contained several steps. These steps included the 

following:

Figure 1. Training classifier for Arabic ambiguous requirements
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Tokenization: Tokenization was one of the most critical data preprocessing procedures, and it 
also had significant effects on the overall performance of the model when it came to the text 
classification ta sk. Tokenizing the requirements involved breaking them down into separate 
words or tokens, which in turn made it easier to process and analyze them. This essential step 
was highlighted (Petrović & Stanković, 2019). In this study we used the nltk.word_tokenize () 
function from the NLTK library.

Removal of Non-Arabic Text: During this step, all non-Arabic text was eliminated to ensure that 
solely Arabic text remained for analysis.

Stopword Removal: Stopwords, which are commonly used words with little semantic value (e.g., 
articles, prepositions), were removed from the requirements. This step helped eliminate noise 
and focused on more meaningful words. In this study we utilized the list of stopwords from the 
NLTK library for Arabic.

Figure 2. Predication for Arabic software requirements

Table 1. Removing non-Arabic text

After Removing Non-Arabic Text Arabic Requirements

 ثدحأ عم اًقفاوتم جمانربلا نوكي نأ بجي
لثم ةعئاشلا بيولا تاحفصتم تارادصإ

 تارادصإ ثدحأ عم اًقفاوتم جمانربلا نوكي نأ بجي
بيولا تاحفصتم
Chrome و Firefox و Safari لثم ، ةعئاشلا

Table 2. Stopword removal

After Applying Stopword Removal Arabic Requirements

 تاحفصتم تارادصإ ثدحأ اًقفاوتم جمانرب
ةعئاشلا بيولا

 تارادصإ ثدحأ عم اًقفاوتم جمانربلا نوكي نأ بجي
لثم ةعئاشلا بيولا تاحفصتم
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Normalization: In addition to the processes that have been discussed so far, the process of 
normalization is another method that may be used to continue the standardization of text data. 
Text normalization consists of a set of procedures that are designed to clean and standardize 
textual data into a format that can be used as input by other NLP and analytics systems and 
apps (Lima et al., 2019). The end goal of these stages is to make the data more usable by other 
systems and applications.

Stemming: We use stemming to reduce words to their base or root form. We utilized the Arabic light 
stemmer (Larkey et al., 2002) / ISRI stemmer (Taghva et al., 2005) algorithm from the NLTK 
package for Arabic text stemming, which is particularly intended for this purpose.

Feature Weighting
The TF-IDF (Term Frequency-Inverse Document Frequency) method measures the importance of 
a word in a document or collection or corpus (Rajaraman & Ullman, 2011) Generally, it is used in 
searching for information retrieval, text mining, and user modeling which in the formula that’s used 
to compute is:

tf idf- is tf idf t d tf t d idf t− ( ) = ( ) ( ), , * 	

Using this method we extracted features by determining the importance of terms in each 
requirement, which determined the most pertinent terms for a requirement on the basis of the 
frequency and significance of terms within the requirement. Using the BoW technique, we classified 
each requirement as a collection of individual words or phrases without addressing their order. This 
method generates a unique dictionary of terms by constructing a vocabulary from all of the dataset’s 
requirements. Consequently, each requirement is represented by a feature vector in which each 
dimension corresponds to a vocabulary term (Sarkar, 2016).

Feature Selection
Feature selection is essential for making large problems computationally efficient, that is, for 
conserving computation, storage, and network resources during the training phase and subsequent 
classifier application (Forman, 2003).

We used feature selection techniques to reduce the dimensionality of the feature space and to 
select the most important characteristics for classification. We used the chi-square feature selection 
method, which is available in SelectKBest in Python method from scikit-learn; it was chosen because 
it uses the chi-square test to calculate scores. This method selects the K characteristics with the highest 
scores on the basis of their relevance to the variable of interest. K, representing the number of selected 
features, is set to 10% of the total number of features. The exact number of features depends on the 
initial number of features in the TF-IDF representation of the data.

Data Transformation
Following preprocessing and suitable data selection, we trained and improved ML models that can 
identify ambiguous software requirements. We took the following actions to achieve this:

Scaling: To scale feature vectors to a specific range, we utilized the MinMaxScaler function from 
scikit-learn. This process ensures that each feature is given the same weight throughout model 
training.

Hyperparameter Tuning: To find the best set of hyperparameters for the classifiers model, we did 
a grid search using GridSearchCV from scikit-learn.
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Learning Phase
We used six classifiers and the AraBERT model to learn from this data.

ML Algorithms
We employed several types of ML approaches, such as decision trees, logistic regression, KNN, 
SVM, random forest, and XGBoost, to automate the process of detecting ambiguous Arabic software 
requirements. We employed these particular models because of their documented track record of 
exceptional performance in prior research, including decision tree, random forest, and SVM. Moreover, 
our selection encompassed contemporary models like AraBERT and XGBoost, which represent recent 
advancements in the field. This allowed us to streamline the process significantly. Decision trees 
provide a straightforward paradigm for understanding hierarchical organization of if-then criteria. 
Logistic regression is a common method used in classification problems that involve evaluating the 
chance of correctly identifying ambiguous software requirements. KNN organizes demands into 
categories according to the degree to which they resemble their immediate surroundings. The purpose 
of SVMs is to locate the hyperplane that provides the most accurate differentiation between ambiguous 
and unambiguous criteria (Amro et al., 2023). In contrast to XGBoost, which uses boosting methods 
to produce a set of weak learners, random forest mixes a large number of decision trees in an attempt 
to enhance accuracy. (Dhaliwal et al., 2018)

Decision Trees
Decision trees are algorithms developed by Hunt et al. (1966) to describe a recursive partition of 
the instance space (Rokach & Maimon, 2005). The automated analysis of unclear Arabic software 
requirements may be modeled using decision trees, which provide an interpretable model of the 
process. These models construct a hierarchical framework of if-else conditions by retrieving attributes 
from the criteria and basing their decisions on those features. By recursively splitting the data on 
the basis of the qualities that provide the most insightful information, decision trees can effectively 
classify requirements as ambiguous or unambiguous. The transparency of decision trees is one of 
its many advantages. This enables domain experts to quickly analyze and comprehend the rules that 
are generated by decision trees, which in turn provides insights into the factors that contribute to 
ambiguity in software requirements. In this study, we used DecisionTreeClassifier class from the 
sklearn.tree module.

Logistic Regression
The use of logistic regression is a common approach for assessing the likelihood of an observation’s 
being associated with a particular category, being associated with a particular category as outlined by 
Berkson (1944). Logistic regression, a form of regression analysis, relies on an independent variable to 
predict the dependent variable, as indicated Elsaid et al. (2015). Specifically, binary logistic regression 
is well suited for situations where the dependent variable exhibits two distinct categories. Conversely, 
multinomial logistic regression proves valuable when the dependent variable comprises more than 
two categories. For the purposes of this study, binary classification was employed.

KNN
The foundational principle of this technique is based on the fact that data points within a collection 
exhibit similar attributes to those in proximity (Fix & Hodges, 1951). In order to categorize novel 
data, the approach involves assessing its proximity to preexisting data points stored in the database, 
identifying the k-nearest points, and subsequently calculating their average or mode for regression 
tasks (Kotsiantis, 2011; Althunibat, 2023).
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SVMs
As a supervised approach for classification and regression, SVMs are a very effective and complex 
ML model (Boser et al., 1992). They have the ability to do linear and nonlinear regression and 
classification, as well as spot anomalies. Classification is achieved by constructing a linear hyperplane 
with the greatest separation between categories. The likelihood of incorrectly categorizing new cases 
is decreased because of this buffer, which also prevents data from being separated from the sample 
(Ford & VanderPlas, 2016).

Random Forest
Forest (Ho, 1995), which is an ensemble learning approach, uses many decision trees to increase 
accuracy while avoiding overfitting. Each decision tree in the random forest is trained on a random 
subset of the data, and the final forecast is formed by voting or averaging the forecasts of all the trees. 
Random forests excel in dealing with noise, detecting complex feature interactions, and estimating 
feature values accurately. By pooling predictions from several trees, random forest improves overall 
effectiveness in identifying ambiguous Arabic software requirements.

XGBoost
XGBoost is a powerful ensemble learning approach that assembles a collection of weak learners using 
gradient-boosting methods. It incrementally adds decision trees to the model, with each successive 
tree trained to correct the flaws introduced by the previous trees. XGBoost uses regularization 
methodologies and efficient algorithms to increase the model’s performance. By combining the 
predictions of several weak learners, XGBoost achieves high accuracy and resilience, making it a 
viable option for the automated identification of ambiguous software requirements (Alsoub et al, 2018).

DL
AraBERT is a language model that has been pre-trained for Arabic language processing tasks. It has 
been trained on a massive dataset of Arabic text, giving it a deep comprehension of the language and 
the capacity to do tasks like language translation, text categorization, and sentiment analysis with 
extreme precision. Because of its pre-training on a huge dataset, AraBERT requires relatively little 
further training data to be fine-tuned for unique applications. Such a model would be highly beneficial 
in accelerating the process and lowering costs when developing and deploying NLP models (Aftan 
& Shah, 2023). In this study, we used AraBERT v2.

EXPERIMENTS AND RESULTS

Our work on the automatic detection of ambiguous Arabic software requirements using ML approaches 
is presented in this section, along with the experimental setup and findings. We describe the datasets 
used, the experimental setup, the evaluation metrics and results of the experiments, the ML algorithms 
that were used, the hyperparameter tuning and optimization strategies employed, and the analysis 
of the results.

Dataset Description
This study used 400 Arabic software requirements gathered from different resources such as Google; 
the average of the ambiguous requirements words was 9.625, and the unambiguous words were 14.94. 
After that, we divided them into ambiguous and unambiguous categories. The requirements in our 
dataset lacked a specific structure and were presented as free text, which is a common characteristic 
of requirements. To assess the presence of ambiguity, two experts independently categorized each 
requirement as either ambiguous or unambiguous on the basis of their domain knowledge. Out of the 
400 requirements, 200 were identified as ambiguous, signifying statements that could be interpreted 
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in multiple ways or that lacked clarity, while the remaining 200 were deemed unambiguous. The 
experts engaged in detailed discussions and reached a consensus on the categorization, demonstrating 
high inter-rater reliability (Al Thunibat et al, 2011; Jebril et al., 2023).

This dataset effectively illustrates the challenges posed by ambiguous requirements and 
underscores the advantages of clear and unambiguous requirements in software development projects, 
rendering it a valuable resource for addressing requirement ambiguity.

To evaluate the effectiveness of the proposed methods using this dataset, we employed a cross-
validation approach with five folds (Jaber et al, 2020; Adaileh, 2020). This widely adopted method for 
assessing classification performance involves dividing the data into five parts, where four segments 
are utilized for training and the fifth segment for testing. This process is iterated five times, ensuring 
that all data are used for testing once. Cross-validation offers increased accuracy in comparison to a 
simple train-test split, as it comprehensively considers the entire dataset during evaluation, providing 
a more robust assessment of performance.

Evaluation Measurements
The performance of a classifier is assessed mainly using evaluation metrics. The accuracy of the 
model’s predictions is determined by comparing the model’s predictions to the database’s actual 
values using mathematical methods. Precision is defined as the proportion of correctly identified 
samples to the total number of samples. Precision is calculated by dividing the total number of correct 
classifications by the total number of classifications completed.

The confusion matrix compares the model’s errors and successes to the expected result. True 
positive, true negative, false positive, and false negative concepts are defined on the basis of the 
classification of the response given and the actual response in the database. (Alshehadeh & Al-
Khawaja, 2022; Abuhamdah, et al. 2021)

Accuracy
Accuracy is a broader metric because it estimates the total number of correct classifications. When 
the target classes in the data are (roughly) balanced, this is a good measure:

Table 3. Sample of Arabic dataset

Ambiguous اًعيرس ماظنلا نوكي نأ بجي

Ambiguous مادختسالا ةلهس مدختسملا ةهجاو نوكت نأ بجي

Ambiguous ريوطتلل ًالباق قيبطتلا نوكي نأ بجي

Unambiguous  وأ مهب ةصاخلا جذومنلا تالخدم ةنياعمب نيمدختسملل قيبطتلا حمسي نأ بجي
جذومنلا لاسرإ لبق اهنم ققحتلا

Unambiguous  تارشنلا يف كارتشالا ءاغلإ وأ كارتشالل نيمدختسملل اًرايخ جمانربلا رفوي نأ بجي
ينورتكلإلا ديربلا ربع تاثيدحتلا وأ ةيرابخإلا

Unambiguous  وأ خيراتلا قاطن بسح ثحبلا جئاتن ةيفصتب نيمدختسملل ماظنلا حمسي نأ بجي
ةددحم ةينمز تارتف

Table 4. Confusion matrix

Yes No

Real
Yes True Positive (TP) False Negative (FN)

No False Positive (FP) True Negative(TN)
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Accuracy
TP TN

TP TN FP FN
=

+
+ + +

	 (1)

Precision
Precision is determined by calculating the ratio of the total correct positive predictions to the total 
positive predictions made for a specific class.

Precision
TP

TP FP
=

+
	 (2)

Recall
Recall, also known as true positive rate or sensitivity, represents the percentage of actual positive 
cases that a classifier correctly identifies. Equation 3 likely refers to the specific mathematical formula 
used to calculate recall in your context. Typically, the formula for recall is given as

Recall
TP

TP FN
=

+
	 (3)

This formula measures the proportion of positive instances that were correctly classified by the 
model out of all actual positive instances.

F1-Score
The F1-Score can be calculated by considering both precision and recall simultaneously.

F Score
Precision Recall

Precision Recall
1

2
�

* *
=

( )
+

	 (4)

Experimental Setting
The research made use of the Colab environment, a cloud-based platform offering access to high-
performance computing resources. Leveraging the Colab environment significantly facilitated 
collaborative endeavors by providing a platform for seamless sharing and execution of code and data 
analysis tasks. The study operated with the default Colab hardware configuration, comprising an Intel 
Xeon CPU equipped with 2 vCPUs (virtual CPUs) and 13GB of RAM.

Experimental Result
ML Results
Table 5 summarizes the performance metrics for several ML algorithms using various stemmers, 
such as No Stemmer, ISRI Stemmer, and Arabic Light Stemmer. Accuracy, precision, recall, and F1 
score are among the criteria considered.

Random forest and KNN had the top two performances among the algorithms. KNN outperformed 
all stemmers in terms of accuracy, scoring 0.96 without a stemmer, 0.97 with ISRI Stemmer, and 0.97 
with Arabic Light Stemmer. This demonstrates the KNN algorithm’s resilience and generalizability. 
Random forest also performed well, with an accuracy of 0.95 without a stemmer, 0.99 with the ISRI 
Stemmer, and 0.97 with the Arabic Light Stemmer. KNN is well suited for the job at hand because 
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of its capacity to identify data points on the basis of their closeness to nearby samples (Wasmi et al, 
2021; Alrwele, 2023).

Random forest and KNN both exhibited constant performance across multiple stemmers, showing 
their adaptability to various text preparation approaches. As a result, these two methods may be 
deemed the best in this examination. However, the ultimate decision among them may be influenced 
by other considerations such as processing efficiency, interpretability, and the application’s unique 
needs (Alrawashdeh et al, 2021).

Figure 3 displays the results of the ML algorithm without the application of a stemmer, as shown 
in the bar chart.

Figure 4 presents the results of the ML algorithm with the implementation of the ISRI stemmer, 
as depicted in the bar chart.

In Figure 5, the bar chart depicts the performance of the ML algorithm with the application of 
the ISRI stemmer.

AraBERT Results
Table 6 provides a comprehensive overview of the AraBERT model’s performance across various 
random states, each evaluated at 5 epochs. The results highlight the model’s consistency and 
effectiveness in Arabic text classification.

Table 5. The top results

Stemmer No Stemmer ISRI Stemmer Arabic Light Stemmer

Evaluation / 
ML Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

DT 0.93 0.94 0.93 0.93 0.96 0.96 0.96 0.96 0.95 0.96 0.95 0.95

KNN 0.96 0.96 0.96 0.96 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.97

SVM 0.95 0.95 0.95 0.95 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.95

RF 0.95 0.95 0.95 0.95 0.99 0.99 0.99 0.99 0.97 0.97 0.97 0.97

LR 0.96 0.96 0.96 0.95 0.95 0.95 0.96 0.95 0.95 0.95 0.95 0.95

XG 0.95 0.96 0.95 0.95 0.98 0.98 0.98 0.98 0.96 0.96 0.96 0.95

Figure 3. Bar chart for ML algorithm when no stemmer is applied



International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

12

Figure 4. Bar chart for ML algorithm when ISRI stemmer is applied

Figure 5. Bar chart for ML algorithm with ISRI stemmer

Table 6. AraBERT model results with 5 epochs

Random state Values Precision Recall F1 Score

Random state =5 0.96 0.96 0.96

Random state =10 0.97 0.98 0.97

Random state =15 0.97 0.97 0.97

Random state =20 100 100 100

Random state =42 0.99 0.99 0.99

Average 0.978 0.98 0.978
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For the random state of 5, the AraBERT model exhibited commendable accuracy, recall, and 
F1 score metrics, all registering at 0.96. This indicates a high level of correctness and reliability in 
the model’s predictions.

With the random state set to 10, the model showcased slight improvement, achieving an accuracy 
of 0.97, recall of 0.98, and an F1 score of 0.97. This signifies the model’s capability to capture more 
true positives while maintaining overall accuracy.

Similarly, at a random state of 15, the AraBERT model maintained consistent and balanced 
performance, securing accuracy, recall, and F1 score metrics all at 0.97.

A notable highlight occurred at a random state of 20, where the AraBERT model achieved 
flawless accuracy, recall, and F1 score metrics of 1.00, indicating impeccable and precise predictions.

Adjusting the random state to 42 resulted in high accuracy, recall, and F1 scores of 0.99, further 
emphasizing the model’s accuracy and reliability in its predictions.

In summary, the AraBERT model consistently outperformed across all random states, with 
accuracy, recall, and F1 scores ranging from 0.96 to 1.00. These results underscore the model’s 
robustness and efficacy in identifying patterns and making accurate predictions. The minimal variance 
in outcomes suggests that changes in the random state, affecting data selection for training and testing, 
have a negligible impact on AraBERT’s performance. This consistency aligns with expectations, given 
the proven high performance of BERT and its variations in the existing literature.

Across all random states, the average accuracy stands at 0.978, the average recall at 0.98, and the 
average F1 score at 0.978, reaffirming the overall strong and reliable performance of the AraBERT 
model in Arabic text classification tasks.

Results Comparisons
In this study, a comprehensive comparison was conducted between AraBERT and several ML 
algorithms, namely KNN optimization with no stemmer, random forest with ISRI stemmer, and 
KNN with Arabic light stemmer. The evaluation metrics, including precision, recall, and F1 score, 
were utilized to assess their performance, and the results, as illustrated in Table 7, demonstrated that 
random forest with ISRI stemmer achieved the highest scores across all metrics, notably achieving 
a remarkable F1 score of 0.99.

Further analysis involved comparing the best-performing ML methods with AraBERT. Notably, 
random forest with ISRI stemmer outperformed AraBERT, aligning with expectations given their 
documented high performance in the literature. Additionally, it was observed that the integration 
of the ISRI stemmer further enhanced the efficiency of random forest. It’s crucial to note that 
AraBERT, not utilizing stemming, and still evolving for the Arabic language, exhibited competitive 
performance. Moreover, KNN’s performance improved with the application of the Arabic light 
stemmer, emphasizing the effectiveness of ML and DL models in classifying ambiguous requirements.

A separate set of experiments explored the impact of requirement skewness on the model’s 
performance, utilizing the best-performing model, random forest with ISRI stemmer. In cases of 
long requirements with ambiguous and non-ambiguous parts, the model’s performance was sentence-
dependent, indicating that the dominance of either the ambiguous or non-ambiguous part is influenced 
by the frequency and weights of their respective words. Regarding requirements with spelling errors, 
the model showcased its ability to ignore errors and focus on correctly spelled words, aligning with 
its objective of determining ambiguity.

Table 8 presents the results of a statistical analysis using paired t-test, focusing on F1 scores. 
Interestingly, despite different F1 values, AraBERT and RF with ISRI showed no significant difference, 
highlighting the superiority of these two models in classifying ambiguous requirements.

In summary, the study provides a comprehensive comparison between AraBERT and ML 
algorithms, showcasing the effectiveness of Random Forest with ISRI stemmer. The findings 
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underscore the potential of both DL and traditional ML approaches in handling Arabic text 
classification tasks, offering insights into their respective strengths and highlighting areas for further 
exploration and refinement.

Figure 6 provides a comprehensive comparison between AraBERT and the best results achieved 
by ML algorithms under different stemming conditions, including no stemmer, ISRI stemmer, and 
Arabic light stemmer.

Limitations
This work, while making notable contributions, is constrained by several limitations. The foremost 
challenge lies in the scarcity of datasets, prompting the creation of a dedicated dataset for Arabic 

Table 7. Comparison between AraBERT and the best result For ML algorithms (no stemmer, ISRI stemmer, Arabic light 
stemmer)

Evaluation 
Metrics

AraBERT 
Model

KNN Optimization With 
No Stemmer Applied

Random Forest With 
ISRI Stemmer

KNN With Arabic 
Light Stemmer

Precision 0.978 0.96 0.99 0.97

Recall 0.978 0.96 0.99 0.97

F1 Score 0.978 0.96 0.99 0.97

Table 8. Comparison between various classifiers using paired t-test

Evaluation Metrics AraBERT 
Model

KNN Optimization With 
No Stemmer Applied

Random Forest With 
ISRI Stemmer

KNN With Arabic 
Light Stemmer

AraBERT - > = =

Knn (no stemmer) < - < <

Random forest with 
ISRI stemmer = > - >

KNN with Arabic 
light stemmer < > < -

Figure 6. Comparison between AraBERT and the best result on ML algorithms (no stemmer, ISRI stemmer, Arabic light stemmer)
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requirements. However, further enrichment could be achieved by incorporating datasets from diverse 
domains and expanding the dataset size. Additionally, the limited landscape of existing studies in 
this domain hinders meaningful comparisons and optimizations. Future research efforts in the same 
domain would contribute to a more comprehensive understanding. Moreover, despite leveraging 
AraBERT, the deep-based method, it is acknowledged that the classifier is not fully developed for 
the Arabic language. Continuous improvements in AraBERT or the exploration of alternative DL 
approaches could lead to enhanced results, addressing this limitation and advancing the capabilities 
of Arabic language classifiers. Overall, these limitations highlight the imperative for ongoing efforts 
in dataset diversity, comparative studies, and the continuous development of DL models tailored for 
Arabic language processing.

CONCLUSION AND FUTURE WORK

Conclusion
In this study, both the AraBERT model and various traditional ML algorithms were evaluated for 
their performance in Arabic text classification. The results showcase the efficacy of ML techniques, 
including decision trees, KNN, SVMs, random forest, logistic regression, and XGBoost, in achieving 
commendable accuracy, precision, recall, and F1 scores. These findings affirm the suitability of these 
ML algorithms for pattern recognition and accurate predictions in the domain of Arabic language 
processing applications.

Notably, the AraBERT model, a customized pre-trained language model tailored for Arabic 
text, emerged as a standout performer. It consistently outperformed competitors across key metrics, 
including accuracy, precision, recall, and F1 scores. This finding underscores the significant 
enhancement that DL and pre-trained models, such as AraBERT, can bring to the capabilities of 
Arabic text classification systems.

Among the ML algorithms, random forest and KNN demonstrated top-notch performances. KNN, 
in particular, showcased resilience and generalizability by outperforming all stemmers, achieving an 
accuracy of 0.96 without a stemmer, 0.97 with ISRI stemmer, and 0.97 with Arabic light stemmer. This 
result highlights the robust nature of the KNN algorithm, especially in identifying data points on the 
basis of their proximity to nearby samples. Similarly, random forest exhibited strong performance, with 
accuracies of 0.95 without a stemmer, 0.99 with ISRI stemmer, and 0.97 with Arabic light stemmer.

The AraBERT model consistently outperformed various random states, illustrating its 
effectiveness in accurately identifying data patterns and making valid predictions. Across all random 
states, the AraBERT model exhibited high levels of accuracy, recall, and F1 scores, ranging from 0.973 
to 1.00. This robust and consistent performance further reinforces the reliability and effectiveness of 
the AraBERT model in Arabic text classification tasks.

In summary, the study demonstrates the success of traditional ML algorithms and highlights the 
remarkable performance of the AraBERT model in Arabic text classification. The findings underscore 
the potential for both conventional and DL approaches to contribute significantly to the advancement 
of Arabic language processing applications.

Future Work
The current study offers valuable insights into ML algorithms and the AraBERT model in the context 
of Arabic text classification. However, to further enhance and expand upon these findings, several 
promising avenues for future research can be explored.

First, because of the existing scarcity of Arabic datasets, future studies should prioritize the 
collection of diverse and representative datasets spanning different domains and dialects. This 
approach will enable researchers to assess the generalizability and robustness of ML algorithms and 
the AraBERT model across various linguistic variations and real-world settings. Additionally, there 



International Journal of Cloud Applications and Computing
Volume 14 • Issue 1

16

is a need for concerted efforts to construct benchmark datasets specifically tailored for Arabic text 
categorization. These specialized datasets would facilitate fair comparisons, fostering advancements 
in the field.

Second, while the current research relies predominantly on standard evaluation criteria such as 
accuracy, precision, recall, and F1 scores, future investigations should consider incorporating additional 
measures. Metrics like information gain or receiver operating characteristic (ROC) curves could 
provide a more comprehensive assessment of the performance of ML algorithms and the AraBERT 
model. Exploring the interpretability of these models is another avenue for future research, shedding 
light on the decision making processes and revealing insights into the characteristics and patterns 
that these models rely on for categorization.

Third, an intriguing area for future exploration involves evaluating the transfer learning capabilities 
of the AraBERT model. Researchers could leverage the pre-trained information embedded in the 
model and adapt it to specific domains by fine-tuning the AraBERT model for particular Arabic text 
categorization tasks or employing transfer learning approaches. This line of inquiry has the potential 
to uncover the adaptability and versatility of the AraBERT model in diverse applications.

In summary, future research endeavors in Arabic text classification should focus on expanding and 
diversifying datasets, incorporating additional evaluation metrics, exploring model interpretability, and 
investigating the transfer learning capabilities of the AraBERT model. These efforts will contribute 
to a more nuanced understanding of the model’s performance and foster advancements in the field 
of Arabic NLP.
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